THERMODYNAMIC MODEL OF A DENSE FLUID

V. P. Kopyshev

In this paper we derive an approximate equation of state of a dense fluid in which the thermal
pressure is completely determined by the pressure dependence of the volume at 0°K. We
also consider some generalizations (which take into account the attractive forces of the atoms
and the presence of mixtures).

In statistical mechanics the thermodynamic quantities of a material are expressed in terms of the
potential of the interatomic interaction,and modern computational techniques (the Monte Carlo method)
make it possible to carry out the calculations to the end.

However, calculations (quantum-mechanical) of the interatomic potential itself are extremely diffi-
cult, The usual assumption that it does not depend on the density of the material and reduces to a sum of
potentials of binary interactions may not be applicable to dense fluids and then even exact statistical calcu-
lations made on the basis of these assumptions cannot guarantee accuracy in the description of the thermo-
dynamic properties of a real fluid.

This is why many authors prefer a shorter route: one postulates a certain expression with empirical
parameters directly for one of the thermodynamic functions and not for the interatomic potential. This
frankly empirical approach is justified by a detailed description of extensive experimental material, How-
ever, if only minimal information is available (for example, if one knows only the shock adiabatic curve of
a dense fluid), it is desirable to have the simplest and physically most justified equation of state that makes
it possible to establish the complete thermodynamics of the fluid with a satisfactory accuracy. The pres-
ent paper is devoted to this problem.

We note first that there are always regions of higher and lower density in a fluid because of the
thermal motion. One can have the extreme case when in a certain microscopic region the atomic nuclei
move on the average toward the center of the region (compression) and then away from the center (expan-
sion), i.e., at a certain instant the matter is in a cold state in the microscopic region because the nuclei in
the region are instantaneously at rest,

The molar volume V of the region at this instant is determined by the mean pressure in the fluid, ie.,
it is equal to the elastic or the cold volume V_(p)p at T = 0°K. Here and in what follows, the subscript
minus is appended to the quantity for the "cold" state.

The dependence V_(p) for p > 0 reflects the contribution of all the interatomic forces, which, added
together, give the repulsive force of the atoms. The interaction of all the elementary charges in regions of
higher density is essentially collective and leads to the corresponding bonds: valent, metallic, ete,

Another limiting case is possible when the nuclei are so far apart that they form an ideal gas,

We shall attempt to describe the real case, which is intermediate between these limits, by means of
a sensible interpolation. We note first that if V > V_(0) attractive forces also act; exclusively for the sake
of simplicity we shall ignore them. Actually, for a dense fluid (and also in the region of strongly super-
critical temperatures), this neglect is completely justified. For simplicity we shall also ignore the excita-
tion of electrons, which can be taken into account by the usual methods.
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We determine the "elastic" volume V{p, T) from the identity

RT 1
P=EVV(p, T) @

Here R is the universal gas constant.

In the well-known model of dense fluid with incompressible molecules, V, = const, The elastic volume
restricts, as it were, the region of motion of the molecules to the free volume, which is equal to

RT
V—Vo=—=V*(p, T)

Here and in what follows, the asterisk denotes the functions of an ideal gas. The molecules in the
free volume are themselves regarded as material points., We shall also adopt this interpretation of Eq. (1)
for the case of compressible molecules, when V, is variable.

Compressibility of a molecule is an internal property that does not depend on the factors producing
an internal pressure on the molecule, say, the elastic pressure from the direct contact with immobile
neighboring molecules or the kinetic pressure from impacts of the other molecules from all sides (dense
fluid, collisions essentially nonbinary!). Therefore, V, is assumed to be a function of only the pressure,
and the temperature determines only the fraction of the elastic part in the given pressure. Of course, if at-
tractive forces play an important role, V, begins to depend on the density as well, i.e., ultimately on the
temperature also.

Usually, one ignores discontinuities on melting and the solid phase is not distinguished from the
liquid when Vy(p) = V_(p). We therefore obtain the desired interpolation

V=V_(@) + V*(p)=V_(p) + RT/p (2)

i.e., the volume is split into two regions in which the limiting states considered above are realized. Note
that for a dense fluid the very concept of a molecule is arbitrary and by its dimensions (discussed above)
at a given pressure one must understand the mean volume associated with the "molecule” at T = 0 and the
same pressure,

If T = const and p — 0, the fluid becomes a perfect gas, We determine the thermodynamic potential
from this boundary condition:

O (p, Tye= V7, T dp = ©_(p) + O* (5, 7) 3)

Without complicating Eq. (3), we can also allow for attractive forces approximately by introducing a
constant py,

O (p, T)=D_(p) + * (p + o, ) (4)

Then a constant term —p, is added on the right-hand side of (1).

From (4) we obtain the asymptotic behavior as T — 0:

E(V, T)=E_(V) + (1 + Ygi) RT
RT __dp_(V)

PV D =p. N~ 07 av

Here E is the internal energy and i is the number of degrees of freedom of a molecule. For a mono-
tonic substance (i = 3) the thermal energy is 5RT/2 instead of the usual 3RT. This defect is not very im-
portant because in gas-dynamical calculations of adiabatic flows and shock waves one only employs the
ratio

y=®—pI)V/E—E,

The description of the state of a solid can be improved by choosing p, from the condition that ¥ be
equal to its experimental value at p_= 0.

We now give some examples that confirm the model.
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1. The Monte Carlo method was used to calculate the equation of state of an idealized material for
which the binary potential of the atoms, which repel one another at the distance r, is equal to Ar™%, where
A = const., The results can be well described by the one-parametric interpolation formula if the parameter
a 1is set equal to 0,23 in the formula, The formula gives the correct limits as T — 0 (cold state plus the
contribution of harmonic oscillations) and as T — (state of an ideal gas plus the second virial correction):

_ Tt 3+ ar ®)
I=m="7 Y'Y Iraar 1507y
Here
T /V\2
- 5 F.

and N is Avogadro's number. The proposed model gives (for p; = 0)

= By

The two functions f(x) are similar, as can be seen in Fig. 1.

2. In Fig. 2 the functions V_{p, T) are given for hydrogen in the experimentally investigated region
of strongly supercritical states 0 < p < 3 kbar, 0 = T = 150°C (see [1]}. The difference in the limiting iso-
therms, which is due to the effect of attractive Van der Waals forces, vanishes for p > 1.5 kbar. The dif-
ference between V, and V_ in the region 1,5 < p < 3 kbar does not exceed 5%.

3. The cold curve for hydrogen V_ has been measured up to 20 kbar and described by an analytic
formula [2]. Extrapolation of the formula to 40 kbar agrees with the approximate calculations of [3]. For
a shock wave moving in liquid hydrogen with V = 14,1 cm®/g, calculation in accordance with the model
with this cold curve (with p, = 0) for p = 39.5 kbar gives V = 5.45 cm?/g, whereas experimentally [4] we
have V = 5.2 em®/g, i.e., it is only 5% less.

4. There are a series of shock adiabatic curves for ionic salts of different porosity m [5]. The cold
curve was determined from the shock adiabatic curve of the continuous material m = 1) and p; from y at
p_=0. In Table 1 we give the theoretical v and experimental V @) values of V, and also the calculated
temperatures, The greatest systematic discrepancies between v(t) and v (about 5~10%) agree with the
corrections for the excitation for electrons estimated in [5].

The main advantage of the proposed model of a fluid over the models in [5] and especially in [4] is
the exceptional simplicity of both the calculations and the physical interpretation.

In other materials in the experimentally investigated region of states, Van der Waals forces are
more important than for hydrogen. In dynamical experiments with porous metals the excitation of valence
electrons is more important than for ionic salts. In these cases, of course, the proposed equation of state
must be improved.

In [6] an equation of the state in the form (1) is also assumed (specifically for TNT) with
Vo="5 4+ ¢p 4 dp?

However, there is no discussion of the physical justification for assuming the temperature indepen-
dence of the coefficients b, ¢, and d or the relationship hetween Vy and V_ or, finally, the experimental
verification of the postulates,

The generalization of the model to the case of a mixture corresponds to the notion of additivity of the
volumes of the components (see also [6])

© (p, ) =\ tn® (7, 7) (San=1)
, = -

Here ay, is the concentration of the n-th component of the mixture. All the ap are determined from
the condition of a minimum of ¢ subject to additional normalization conditions.
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TABLE 1

M
m , Mbar | v(2 v T, °K
» cm)g/g cmﬂ/g‘
LiF 1.55 1,230 | 0.275 | 0.272 18000
2,08 0.935 | 0.320 | 0.325 22800 !
2.08 0.138 | 0.368 | 0.388 5700 J
3.00 0.655 | 0.379 | 0.403 27200
4.68 0.430 | 0.4%8 | 0.517 34000 2
NaCl 1.514 | 0.915 | 0.202 | 0.298 28600 7
0.874 | 0.289 | 0.300 27300 7 ==
0.804 | 0.302 | 0.304 25000 Lm
0.645 | 0.316 | 0.314 19300 ;
0.568 | 0.317 | 0.320 16500 4 z
0.397 | 0.333 | 0.337 10700 Fig. 1
0.162 | 0.377 | 0.376 3700 ’
2.485 | 0.695 | 0.366 | 0.380 39400 .
0.659 | 0.350 | 0.383 37200 cm®/ mole
0.570 | 0.374 | 0.389 34400 N
0.449 | 0.38% | 0.398 24600 " A
0.424 | 0.390 | 0.400 23200 N
0.268 | 0.397 | 0.416 14000 _ P I
0.112 | 0.436 | 0.439 5000 v
Kal | 1.4 | 0458 | 0.375 | 0.3%4 5000 s f”ﬂfcf/m
7 1 ? 4 kbar
Fig. 2

By way of an example, let us consider a mixture of molecular and atomic hydrogen. The correspond-
ing cold curves can be taken for example, from [7]. The concentration « of atoms is determined by the
equation

1 TV p 2 —
1= (_Ti) L exy P«u(P)kT'P'm ()

Here Z(T) is the vibrational partition function (we assume that the rotations of the molecules are
fully excited), 4, and uy, are the chemical potentials at T = 0 of the atom and the molecule, respectively;
Py = 8.42 kbar; T, = 120.7°K; k is Boltzmann's constant,

As p — 0 we obtain the usual Saha formulas for an ideal gas (dissociation by the "temperature") and
as T — 0 we obtain the usual condition for the coexistence of atomic and molecular phases at T = 0 (dis-
association by the "pressure”):

2pg (p) = pm (P)

However, corrections must be made in the formulas at low temperatures to take into account the
freezing of the rotation of the molecules and the vibrations of the centers of mass of the molecules and the
atoms.

Note that in the adopted model a phase transition of the first kind from the molecular to the atomic
phase is absent since the concentration « varies continuously for T > 0. However, pronounced nonmonoton-
icity is possible in this variation., Then, for example, the passage of a shock wave at fairly low tempera-
tures would reveal effects very similar to a phase transition (in effect, a point of inflection of the adiabatic
curve). This gives an alternative qualitative explanation of the point of inflection of the shock adiabatic
curve for ionic salts discovered in a definitely liquid state [5]. The components of the "phases" are here
liguids with coordination numbers as in the corresponding solid modifications.
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